Introduction of Next Generation Sequencing into Clinical Diagnostics

Rong Mao, MD Associate Professor of Pathology University of Utah Medical Director of Molecular Genetics and Genomics ARUP Laboratories

August 11th, 2014

Describe methodology of next generation sequencing and compare different platforms

Discuss processes, validations and use of gene panels, exome sequencing and whole genome sequencing

Understand and appreciate the complexity of data created by next generation sequencing Proc. Natl. Acad. Sci. USA Vol. 74, No. 12, pp. 5463-5467, December 1977 Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage ϕ X174)

F. SANGER, S. NICKLEN, AND A. R. COULSON

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

1977

Courtesy of Dr. K Voelkerding

1986 - Fluorescent Sanger Sequencing and Capillary Electrophoresis

60,000-80,000bp sequences

ABI3730

0:27

IT ELL'ENA Avuigan

Sanger Sequencing Alignment Using Mutation Surveyor Software

Sanger Sequencing

- Mature chemistry: ~ 600 800 Base Length Reads
- > 1,000s Equal Length Termination Products per Peak
- > Bi-Directional Sequencing Increases Accuracy
- > Established Base Calling Algorithms

Accuracy Approaches 100% = Gold Standard

First Next Generation Sequencing Report - 2005

Genome sequencing in microfabricated high-density picolitre reactors

Marcel Margulies¹*, Michael Egholm¹*, William E. Altman¹, Said Attiya¹, Joel S. Bader¹, Lisa A. Bemben¹, Jan Berka¹, Michael S. Braverman¹, Yi-Ju Chen¹, Zhoutao Chen¹, Scott B. Dewell¹, Lei Du¹, Joseph M. Fierro¹, Xavier V. Gomes¹, Brian C. Godwin¹, Wen He¹, Scott Helgesen¹, Chun He Ho¹, Gerard P. Irzyk¹, Szilveszter C. Jando¹, Maria L. I. Alenquer¹, Thomas P. Jarvie¹, Kshama B. Jirage¹, Jong-Bum Kim¹, James R. Knight¹, Janna R. Lanza¹, John H. Leamon¹, Steven M. Lefkowitz¹, Ming Lei¹, Jing Li¹, Kenton L. Lohman¹, Hong Lu¹, Vinod B. Makhijani¹, Keith E. McDade¹, Michael P. McKenna¹, Eugene W. Myers², Elizabeth Nickerson¹, John R. Nobile¹, Ramona Plant¹, Bernard P. Puc¹, Michael T. Ronan¹, George T. Roth¹, Gary J. Sarkis¹, Jan Fredrik Simons¹, John W. Simpson¹, Maithreyan Srinivasan¹, Karrie R. Tartaro¹, Alexander Tomasz³, Kari A. Vogt¹, Greg A. Volkmer¹, Shally H. Wang¹, Yong Wang¹, Michael P. Weiner⁴, Pengguang Yu¹, Richard F. Begley¹ & Jonathan M. Rothberg¹

"Massively Parallel Sequencing"

Paradigm Shift

Sanger Sequencing

Electrophoretic Separation of Chain Termination Products

Next Generation Sequencing

Sequence Clonally Amplified DNA Templates in a Flow Cell Massively Parallel Configuration

Courtesy of Dr. K Voelkerding

Next Generation Sequencing Workflow

Next Generation sequencing work Flow: Illumina Library Prep

Courtesy of Dr. W Donahue

Roche/454 FLX Titanium: Workflow Long Read Length>400bp

Sample Fragmentation

Adapter Ligation

emPCR (1 fragment = 1 bead)

Beads with clonally amplified template DNAs and sequencing enzymes

Roche/454 FLX Titanium-Pyrosequencing

Roche/454 Life Sciences Long Reads 400bp+

Genome Sequencer FLX Titanium
 > 1 million/400 bp reads=400 Mb
 Run Time: 10 hrs
 Reagents: \$6000/run
 Roche Junior

Sequencing by reversible dye terminators

Image scanning and Sequencing

Image of clusters during sequencing.

Paired-End Reading (2X100 bp)

Reference sequence

Paired end reads

- Increase read coverage per cluster
- More accurate reading and alignment
- Detect small and large insertions, deletions, inversions, and other rearrangements

Illumina-Short reads 35bp-150bp

HiSeq 2500

- 1000Gb reads
- Run Time: 14 days/125bp
- Reagents: \$14,000
- 8 separate flow cells /run

48

Bioinformatics and Data Analysis

Important Parameters for NGS Data Analysis

Next Generation Sequencing Cost Dropping

Jan -2014 Cost per genome=\$4,008

http://www.genome.gov/sequencingcosts/

Multi-Gen Panel Diagnostics

- Large gene with no mutation hotspot, e.g. NF1 58 coding exons; DMD 79 exons
- Multiple genes responsible for the phenotype (genetics heterogeneity)
- Phenotypic overlapping

Difficult for Sanger sequencing

Multi-Gen Panel Diagnostics

X-Linked Mental Retardation ----- 95 genes

Feasible for next generation sequencing

Mitochondrial Disorders-Model for Multi-Gene Panel

>1500 genes
Nuclear DNA
mtDNA

*****ATP generation

ATP production via oxidative phosphorylation

Energy resource:

supplies 90% of energy for the body

Mitochondrial genome

Double stranded, circular
 No intron, 80 - 93% coding gene
 Lack histone and DNA repair mechanism

damage, mutations (free radicals)

- 37 gene: 22 tRNA, 2 rRNA
 &13 protein
- Heteroplasmy
- Maternal inheritance

Mitochondrial Nuclear Genes

>1500 genes encode proteins in the mitochondria

Mendelian Inheritance
 Dominant
 Recessive
 X-linked

108 Disease Causing Mito Nuclear Genes

Gene	NM no.	Chr			
ABCB7	NM_004299	chrX			
ACAD9	NM_014049	chr3			
ACADL	NM_001608	chr2			
ACADM	NM_000016	chr1			
ACADS	NM_000017	chr12			
ACADVL	NM_000018	chr17			
ACAT1	NM_000019	chr11			
APTX	NM_175073	chr9			
ASS1	NM_000050	chr9			
ATPAF2	NM_145691	chr17			
ATXN7	NM_000333	chr3			
BCKDHA	NM_000709	chr19			
BCKDHB	NM_183050	chr6			
BCS1L	NM_004328	chr2			
c10orf2	NM_021830	chr10			
CABC1	NM_020247	chr1			
COQ9	NM_020312	chr16			
COX10	NM_001303	chr17			
COX15	NM_078470	chr10			
COX6B1	NM_001863	chr19			
CPT1A	NM_001876	chr11			
CPT2	NM_000098	chr1			
DARS2	NM_018122	chr1			
DBT	NM_001918	chr1			
DGUOK	NM_080916	chr2			
DLAT	NM_001931	chr11			
DLD	NM 000108	chr7			

Gene	NM no.	Chrr				
DNAJC19	NM_145261	3				
DNM1L	NM_012062	12				
ETFA	NM_000126	15				
ETFB	NM_001014763	19				
ETFDH	NM_004453	4				
ETHE1	NM_014297	19				
FH	NM_000143	1				
FXN	NM_000144	9				
GFM1	NM_024996	3				
HADH	NM_001184705	4				
HADHA	NM_000182	2				
HADHB	NM_000183	2				
HMGCL	NM_000191	1				
HMGCS2	NM_005518	1				
HSPD1	NM_002156	2				
LRPPRC	NM_133259	2				
MCCC2	NM_022132	5				
MFN2	NM_014874	1				
MPV17	NM_002437	2				
MRPS16	NM_016065	10				
MRPS22	NM_020191	3				
NDUFA1	NM_004541	Х				
NDUFA11	NM_175614	19				
NDUFAF1	NM_016013	15				
NDUFAF2	NM_174889	5				
NDUFAF3	NM_199069	3				
NDUFAF4	NM 014165	6				

Gene	NM no.	Chr			
NDUFS1	NM_005006	2			
NDUFS2	NM_004550	1			
NDUFS3	NM_004551	11			
NDUFS4	NM_002495	5			
NDUFS5	NM_004552	1			
NDUFS6	NM_004553	5			
NDUFS7	NM_024407	19			
NDUFS8	NM_002496	11			
NDUFV1	NM_007103	11			
NDUFV2	NM_021074	18			
OPA1	NM_130837	3			
OXCT1	NM_000436	5			
PC	NM_001040716	11			
PCK2	NM_004563	14			
PDHB	NM_000925	3			
PDHX	NM_003477	11			
PDP1	NM_001161778	8			
PDSS1	NM_014317	10			
PDSS2	NM_020381	6			
PINK1	NM_032409	1			
POLG	NM_002693	15			
POLG2	NM_007215	17			
PPM1B	NM_002706	2			
PREPL	NM_006036	2			
PUS1	NM_025215	12			
RRM2B	NM_015713	8			
SCO1	NM_004589	17			

	Gene	NM no.	Chr			
	SCO2	NM_005138	22			
	SDHA	NM_004168	5			
	SDHB	NM_003000	1			
	SDHC	NM_003001	1			
	SDHD	NM_003002	11			
	SLC22A5	NM_003060	5			
	SLC25A13	NM_001160210	7			
	SLC25A15	NM_014252	13			
	SLC25A19	NM_001126121	17			
	SLC25A20	NM_000387	3			
	SLC25A22	NM_024698	11			
	SLC25A3	NM_002635	12			
	SLC25A4	NM_001151	4			
	SLC3A1	NM_000341	2			
1000	SPG7	NM_003119	16			
1000	SUCLA2	NM_003850	13			
	SUCLG1	NM_003849	2			
	SURF1	NM_003172	9			
	TAZ	NM_000116	Х			
	TIMM8A	NM_004085	Х			
1000	TK2	NM_004614	16			
	TRMU	NM_018006	22			
	TSFM	NM_001172696	12			
	TUFM	NM_003321	16			
	UQCRB	NM_006294	8			
	UQCRQ	NM_014402	5			
	WFS1	NM_006005	4			

Mitochondrial Disease Prevalence

Incidence of 1:5000 live births (Smeitink 2006)

20% are due to mtDNA mutations (200 pathogenic mutations), 80% to nuclear DNA mutations

Mitochondrial Disorders-Model for Multi-Gene Panel

- Next Generation Sequencing (NGS)
 Mitochondrial genome sequencing
 108 Mito Nuclear genes sequencing
- Point mutations and small ins/del Low heteroplasmy

Large deletions and duplications in mitochondrial genome and >100 nuclear gens by high density exonic CGH Microarray — ^{20% of del in mito} DNA and 5-10% large

del/dup in nuclear gens

Mitochondrial Genome Enrichment-

Long Range PCR

mt genome enriched by long range PCR

Courtesy of Shale Dames

Mitochondrial 108 Nuclear Genes: Roche/NimbleGen SeqCap for Targeted Enrichment

Sequencing

Mitochondrial Genome NGS

CLCbio Genomics Workbench

CLCBio	Output										/					
3,420 1	3,440 I		3, <mark>46</mark> 0			3,480 I										
ACGT-TGTAGGC	CCCTACGGGCT/ PYGL	ACTACA L (ACCCTTCG	CTGAC A D	CCA-	ТАААА I К	стстт	-CAC(CAA- K	AGAG E	CCC(P	CTA. L	AAA K	С-С· Р	- G - CC/ A	
s <mark>\ACGT-TGTAGGC</mark> 5 N V V G	PYGL	ACTACA L C	ACCCTTCG	CTGAC	АССА - ⁻ Т	TAAAA I K	CTCTI L F	-CAC	CAA- K	AGAG E	CCC P	CTA. L	AAAO K	С-С Р	- G - CC/ A	
2																
0										1]	
Sample ID: NA11605		F	Flowcell ID: 81	C03AB>	(X	m	1.346	60G:	>A							
Fastq file: NA11605_7_1 Start date of run: 022111 Date of analysis: 030820	11	 	Cluster kit ID: (ndex sample, lechnician: S.)745788 Single re Dames	L/N 58 ead	36181										
Reference Position	Amino Acid Cha	ange	Frequencies	Cov	erage	age Clinical Significance										

6517

3460

Ala52Thr

99.7

Courtesy of Shale Dames

Significant: Peripapillary microangiopathy; Gene ND1
mt 128 Nuclear Gene Panel

- Alignment/variant call parameters:
 - Aligned to dbSNP132 annotated and masked reference sequence
 - Minimum coverage: 50-fold
 - Heterozygous allele frequency range: 30-70%
 - Report all CDS SNP/DIP variants
 - Filter out common polymorphisms

Example 1:

- **Clinical history:** Newborn with abnormal phenylalanine on NBS. Follow-up plasma AA showed elevated tyrosine and methionin.
- He had significant failure to thrive, feeding difficulties and fat malabsorption.
- Liver failure and transplant at 7 weeks of age.
- Subsequent development of hypotonia and psychomotor regression. Died at 23 months from a cardiac arrest.

T CTACCTCCAGGCTTCTCCCCAGGTAACACTGAACCTACAACCTTA

Mapping	Reference	Variation	Reference	Allele	Frequencie s	Counts	Coverage	Amino	rs	Mutation
DGUOK	74177859	SNP	G	A/G	53.7/46.3	2695/232 7	5023	Gln197Gln	not reported	MDS compound het with AKA R202TfsX13.

Courtesy of Shale Dames

Mapping	Reference	Variation	Reference	Allele	Frequencies	Counts	Coverage	Amino	rs	Clinical
DGUOK	74184262	DIP	AG	AG/	59.9/39.9	2977/1983	4967	Lys201fs	not reported	MDS. AKA R202TfsX13. Introduces stop codon at aa position Glu214Ter (alt trans VCLKTVPEGQGGGERN*)

Courtesy of Shale Dames

Mito Multiple Gene Panel-Clinical Utility

- Differential diagnosis (NICU), confirm genetics etiology
- Specific disease causing mutation identified
- Family risk consultation and testing for other family members
- Management and treatment

ARUP: Exome Sequencing

- Exome Sequencing with Symptom-Guided Analysis Test Code: 2006332
 - > Proband plus up to five family members (same price)
- Exome Sequencing with Symptom-Guided Analysis, proband Only
 - Test Code: 2006332
 - Prefer to have parental samples for Sanger sequencing controls
- Turnaround Time: 12-16 weeks
- Specimen Type: Blood, other sample types are acceptable

Human Exome

Exome: the portions of a gene or genome that code information for protein synthesis

Est, 21, 000 genes
 180,000 exons
 1.5% of whole genome

Online Mendelian Inheritance in Man (OMIM)

Mendelian basis of inheritance
Total: 22,340 Entries
Gene Description: 14,569
Known disease associated genes: 4,105 (19%)
Autosomal: 1,739; X-linked: 1,210, Y-linked: 59; Mitochondrial: 65

Why Exome Sequencing?

Focuses on the part of the genome we understand best, the exons of the genes

Exons comprise 1% of the genome

~85% of all known disease causing mutations are located on exons

Exome sequencing costs 1/6 of the cost of whole genome sequencing

What is Exome sequencing ?

The sequence of all exons of the genome

What is missing?

Some protein coding genes Some exons of some genes Non-genic control elements Copy number changes Structural changes mtDNA Some microRNA genes

Exome Sequencing

- A powerful tool for gene discovery
- Over 200 genes have been discovered in a couple of years
- Now a powerful diagnostic tool !

Diagnostic Yield

Based on the NIH Undiagnosed Diseases Program clinical sensitivity of exome sequencing is around 25%

Possibly selection of "best" cases

Consistent with ARUP clinical exome sensitivity

Gahl et al., Vol14 (1) Jan 2012 | Genetics in medicine

Diagnostic Odyssey

- Multiple congenital abnormalities
- Intellectual disability
- Unexplained developmental delay or declining

Sequencing Strategy

Sequencing Strategy

Clinical Exome Sequencing

- Indexing of samples (barcoding)
- > Agilent and Nimblegen liquid capturing
- >Illumina HiSeq 2500
- > Alignment / Variant calling / Phenotype scoring
- Candidate mutation list
- > Interpretation

CLINICAL EXOME SEQUENCING

CLINICAL EXOME SEQUENCING

Biotinylated RNA library baits covers all exons annotated in the consensus CDS database as well as flanking sequence for each targeted region and small non-coding RNAs

Image of clusters during sequencing.

Courtesy of Dr. B O'Fallon

ARUP NGS Variar	nt Viewer							rongn	nao
Back to sample list	Sample :	Sample : 12356545651		Search genes & regions		<u>s</u> 🕅	🥃 🛛 🍄	🖲 🕚 1-20 of 1,727 🚺	
	Gene	Exon effect	Zygo	sityc.dot		p.dot	Pop. Free	HGMD & q. OMIM dbSNP #	IGV
p. frequency 🎤	PPAP2C	nonsynonymous SNV	Het	c.G670A		p.D224N	0	-	N
ude pop. freq. > 0.1, ARUP > 30, Var	Bin > SHC2	nonsynonymous SNV	Het	c.G1603A		p.V535M	0	-	2
	RNF126	nonsyr D 1.		1 •				•	
	WDR18	nonsyr Pedig	ree a	analysis:		₀ IGV	viewer	Incidental	
n effect 🎤	ABCA7	nonsyr Inclui	ling	affortad		0.GZ105	0.02	<i>C</i> • 1•	
uding 5 variant types	POLR2E	nonsyr IIICIUC	ung	anecteu		o.V209G	0	findings	
	PLK5	nonfrar fam m	nem	and		p.319_320del	0	-(
	PLK5	nonsyr	ICIII	unu		o.G323R	0	56 genes	
ality & Depth 🥢	MEX3D	nonsyr Daren	ts			o.G509R	0	-	
ality: 20 Depth: 4 Var. freq: 0.1	TCF3	nonsyr				p.A8S	0.0005		5
	ATP8B3	nonsynonymous SNV	Het	c.G478A		p.A160T	0.06	rs45574836	5
	TLE2	nonsynonymous SNV	Het	c.C51G		p.F17L	0		5
leterious Score 🧳	C19orf29	nonsynonymous SNV	Het	c.C323T		p.S108L	0.04	rs55862054	5
ilters set	ANKRD24	nonsynonymous SNV	Het	c.G2419C		p.E807Q	0.04	-	5
	" SHD	nonsynonymous SNV	Het	c.A617C		p.E206A	0.0041	rs114044357	5
	PLIN4	nonsynonymous SNV	Het	c.G2554T		p.G852C	0		5
nes & Regions	PLIN4	nonsynonymous SNV	Het	c.C2551G		p.L851V	0	rs114915943	5
gene filters set	PLIN4	nonsynonymous SNV	Het	c.A2221G		p.T741A	0	-	5
	LONP1	nonsynonymous SNV	Het	c.G2023C		p.V675L	0.0046	-	5

No disease filters set

Summary: None HGMD Variants: None OMIM Disease: None Inheritance pattern: None Phenotypes: None

ARUP frequency:

What are incidental findings?

Variants found by exome/genome sequencing , which are unrelated to the disease of interest

majority of them are benign
a small number of them (between 1-5) might be welldescribed, disease-associated mutations American College of Medical Genetics and Genomics

ACMG Recommendations for Reporting of Incidental Findings in Clinical Exome and Genome Sequencing

Robert C. Green, MD, MPH^{1,2}, Jonathan S. Berg, MD, PhD³, Wayne W. Grody, MD, PhD⁴⁻⁶, Sarah S. Kalia, ScM, CGC¹, Bruce R. Korf, MD, PhD⁷, Christa L. Martin, PhD, FACMG⁸, Amy McGuire, JD, PhD⁹, Robert L. Nussbaum, MD¹⁰, Julianne M. O'Daniel, MS, CGC¹¹, Kelly E. Ormond, MS, CGC¹², Heidi L. Rehm, PhD, FACMG^{2,13}, Michael S. Watson, MS, PhD, FACMG¹⁴, Marc S. Williams, MD, FACMG¹⁵, Leslie G. Biesecker, MD¹⁶

Direct laboratories to return with each genomic sequencing order results from 56 genes in which mutations greatly increase risk of 24 serious, but treatable diseases, even if clinicians do not suspect patients have them.

Incidental Findings

The ACMG Working Group recommended that the laboratory <u>actively search</u> for the specified types of mutations in the specified genes listed in these recommendations.

Mandatory reporting of known mutations for the disorders:

- Hereditary cancers,
- Marfan syndrome,
- Long QT syndrome,
- Brugada syndrome,
- Certain cardiomyopathies

Returning incidental findings in children

Recommendations for seeking and reporting incidental findings are not to be limited by the age of the person being sequenced.

The ethical concerns about providing children with genetic risk information about adult-onset diseases were outweighed by the potential benefit to the future health of the child and the child's parent of discovering an incidental finding where intervention might be possible.

Patient Consent and Opt-in/out option

- Proband and family members needs to consent for exome sequencing and incidental finding
- the ACMG Working Group revised document offering the patient a preference as to whether or not to receive the minimum list of incidental findings described in these recommendations.

Preanalytic Considerations

Genetics counselors discuss the case with physician

- Patient specific
 - well defined findings
 - good evidence for a genetic basis
 - Obtain clinical information, lab results, MRI, etc.
- Family specific:
 - affected family members
 - inheritance pattern
- Consenting patient and family members

Analytic Considerations

Limitations of exome testing - capturing efficiency

Bioinformatic aspects

- variant calling
- filtering
- analyzing genes only in Human Genome Mutation Database or OMIM

- analyzing genes on mandatory reporting

Postanalytic Considerations

- Genetics Counselor and Medical Directors:
 - Reporting
 - negative, positive, uncertain for primary patient findings
 - incidental findings
 - limitations and quality of exome sequencing, coverage

- Ethical and counseling issues
- Patient consent
- Education of consumers (patients, clinicians, payers)

Example 2: Clinical Information

- ➢ 7 yrs. male, Caucasian
- Suspected MPS, Cornelia De Lange
- Neuro: delayed speech, fine motor delays, cognitive delays
- Dysmorphic: hirsutism, coarse
- Growth: short (less than 32 centile), overweight
- Skeletal: diffuse osetopenia, significantly delayed bone age
- Craniofacial: cleft palate, macrodontia, cleft earlobe
- > Dermatologic: eczema

Example 2 : Lab Results

- Metabolic: Normal for MPS screening, UOA nonspecific elevations, phenylacetic acid (PAA) normal.
- Genetics: Normal Karyotype, microarray, Fragile X, and 22q deletion
- Brain: EEG suggests nonspecific diffuse cerebral dysfunction, MRI demonstrated mild cerebral atrophy and changes compatible with a Dx of cerebellitis.

≻ Family history: NO

Example 2 : Exome sequencing

> Exome sequencing performed on proband specimen

> Parental samples were available for Sanger confirmation

Example 2: Exome Data:

Variants (SNV)s in targeted genes: 59,175

Example 2: Candidate Genes/Variants

- No mutation in Cornelia de Lange genes: NIPBL, SMC1A, SMC3 and HDAC8
- No mutations in MPS genes: IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, GLB1, ARSB, HYAL1, GUSB

Example 2: Candidate Gene/Variants

Gene: SATB2 Variant: c.346+2T>G (one copy)

Example 2: SATB2

Sanger confirmation:

- Confirmed on proband.
- Testing both parents, none of them carried this mutation: De Novo

Example 2: SATB2

- SATB2: AT-rich sequence-binding protein 2 (SATB2) gene
- Encodes a protein binds nuclear DNA matrix attachment regions.
- Function: involving in transcription regulation, chromatin remodeling, play an important role in craniofacial patterning and brain development.

Example 2: SATB2 mutations

FitzPatrick, 2003. Reported 2 de novo chromosomal translocations involving 2q32-q33 in unrelated individuals with isolated cleft palate. One breakpoint was localized to intron 2 of SATB2, and the other breakpoint was located 130 kb 3-prime to the SATB2 polyadenylation signal region.

Example 2: SATB2 mutations

Leoyklang, 2007, identified a het de novo mutation, R239X in the patient had isolated cleft palate, generalized osteoporosis, and profound mental retardation, consistent with Glass syndrome (OMIM 612313). The findings suggested a role for the SATB2 gene in malformation syndromes involving craniofacial patterning and brain development.

Example 2: SATB2 mutations

Docker, 2013, a de novo het R239X detected by whole exome sequencing in a 3 y.o. girl with cleft palate, severely delayed speech, hypotonia, and mental retardation.

Dysmorphic facial features included hypotonic face with hypersalivation, hypertelorism, down slanting palpebral fissures, long eyelashes, upturned nose with broad tip, microretrognathia, long philtrum, low-set and posteriorly rotated ears, and crowded teeth. She also had severe sleeping disturbances, restlessness/hyperactivity, and recurrent temper tantrums

Example 2: report

Positive

A pathogenic mutation in SATB2 gene caused patient's phenotype

➢No incidental finding

GUIDELINES/REGULATIONS CLIA/CAP/ACMG

COP

Next Generation Sequencing

Next Generation Sequencing (NGS) incorporates two processes: (1) the analytical wet bench process of sample and library preparation and sequence generation and (2) the bioinformatics process or pipeline of sequence alignment, annotation and variant calling. These two processes are inextricably linked as the output from each process supports the optimization of the other. The large volumes of data produced by NGS platforms put substantial demands on laboratories in terms of the requirements for documentation, validation, quality control and assurance, monitoring, data storage, as well as assessment and implementation of new technology and software releases.

Inspector Instructions:

READ

- Sampling of next generation sequencing policies and procedures
- Records of wet bench processing and bioinformatics process validation
- QM program records with corrective action for component failure
- Sampling of exception log records

Guide validation of samples, analysis and reporting

Clinical Laboratory Standards for Next Generation Sequencing

Heidi L. Rehm, PhD^{1, 2}, Sherri J Bale, PhD³, Pinar Bayrak-Toydemir, PhD⁴, Jonathan S Berg, MD⁵, Kerry K Brown, PhD⁶; Joshua L Deignan, PhD⁷, Michael J Eriez, PhD⁸, Birgit H Eunke, PhD^{1, 2}, Madhuri R Hegde, PhD⁹, Elaine Lyon, PhD⁵; A Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee

Assuring the Quality of Next-Generation Sequencing in Clinical Laboratory Practice

Next-generation Sequencing: Standardization of Clinical Testing (Nex-StoCT) Workgroup Principles and Guidelines

Supplementary Guidelines

CAP Proficiency Test

CAP proficiency test available and the first shipment is in 2015

NGS Validation-Accuracy

- Concordance of results using 2 different assays
 - Known samples from another lab or Coriell repository (HapMap sample-NA12878)
 - ARUP samples analyzed by 2 different methods (Exome-NGS, Sanger)
 - Known positive samples with characterized mutations
 - Confirmed polymorphisms (not disease causing) can be used for method accuracy (HapMap sample NA12878)
- Bioinformatics pipeline parameters and output are captured
- Data from HapMap sample used to determine analytical sensitivity and specificity

Analytical Sensitivity

- Performance of the assay <u>to detect the known variants</u> in the HapMap Sample
- TP/TP+FN
- Will often be >99% because all targeted variants are detected
- Some type of variants (large del-dups) will not be detected
- FN can result from unknown variants in the sequences used for capture

Analytical Specificity

- Performance of the assay <u>to detect normal sequences</u> in the HapMap sample
- TN/TN+FP
- Will often be >99%
- Pseudogenes and difficult regions are examined carefully to limit detection of FP
- Sanger sequencing always performed before reporting a positive

Example from a small gene panel:

Total sites examined	15,981
Total true SNPs	13
Total SNPs identified	14
True positives	13 (100%)
False positives	1 (7.1%)
False negatives	0 (0%)

Table 4. HapMap Sample comparison*

Courtesy of Dr. G. Pont-Kingdon

NGS Validation-Precision

- Within run:
 - Concordance of variant calls in triplicate from one sample
- Between run
 - Concordance of variant calls and quality between two independent experiments from one sample

Example of "within run"

Courtesy of Dr. G. Pont-Kingdon

NGS Validation-Reportable Range & Reference Interval

Reportable range:

List of genes and regions analyzed

Reference range:

Common Polymorphisms found in normal samples

Conclusions

- Next generation sequencing technology provides opportunities for large scale genomic sequencing
- The complexity increases from gene panel to exome to whole genome sequencing
- Next generation sequencing requires advanced informatics for data analysis and annotation tools are rapidly advancing
- Variants detected need confirmation, and causality needs evidence
- Clinical and family information is critical in assessing significance

ARUP R&D and Bioinformatics

- Whitney Donahue
- Shale Dames
- Brendan O'Fallon
- Genevieve Pont-Kingdon
- Karl Voelkerding

University of Utah

Nicola LongoKathryn Swoboda

ARUP Institute for Clinical & Experimental Pathology

ARUP Genomics Lab

- Pinar Bayrak-Toydemir
- Jennifer Stocks
- Tatiana Tvrdik
- Tyler Wayman
- Lisa Robles
- Josh Raney
- Scott Pew
- Chad VanSant Webb

ARUP Genetics Counselors

- •Chris Miller
- Patti Krautscheid

ARUP Laboratories